
Appeon PowerServer
Berlin 29.04.2025
Meoni Marco, Appeon MVP

DISCLAIMER

This presentation was authored by volunteer(s) in the Appeon community. This is not a work for hire by
Appeon. The views and opinions expressed in this presentation are those of the author(s).

Its contents are protected by US copyright law and may not be reproduced, distributed, transmitted,
displayed, published or broadcast without the prior written permission of Appeon. All rights belong to their
respective owners.

Any reference to third-party materials, including but not limited to Websites, content, services, or software,
has not been reviewed or endorsed by Appeon. YOUR USE OF THIRD-PARTY MATERIALS SHALL BE AT YOUR
OWN RISK.

Appeon makes no warranty of any kind, either express or implied, including but not limited to, the implied
warranties of merchantability, fitness for a particular purpose, or non-infringement. Appeon assumes no
responsibility for errors or omissions.

• PowerServer addict

• Training in Appeon products

• WebApp driven by .NET Datastore

• Maintenance of legacy PB apps

• Consultant for Appeon, Novalys, SPI, Power People-
IT…

• PowerBuilder

• PowerServer

• SnapDevelop

• .NET DataStore

marco.meoni@gmail.com
Appeon MVP

meonimarco

• SnapObject ORM

• Vue.JS

• Big Data

• Machine Learning

• Quick Start
• Architecture
• Demo
• SW Components
• PB Project
• App Launcher
• Database Connection

• Advanced
• Dynamic DB mapping
• Long-running vs short-lived
• Merge server calls

• PS2025 new features

Session Agenda

• PB project that converts c/s App into Installable Cloud App (ICA)

What is PowerServer

2003 2008 2013 2017

PS 2020 PS 2022

20242020

DataWindows

eSQLs

• Internet Access
• Minimal Effort
• Leverage PB skills only
• Different from RDP/VDI
• .NET8-based API and PB Native Frontend
• Web Security

Why PowerServer

PB (Frontend + Backend)

Demo

PS Components

• Why is it needed?
• How is it installed?
• What types exist?
• Are admin rights needed?
• Can multiple versions coexist?

Cloud App Launcher

• SnapDevelop Solution
• AppModels
• ServerApi
• ServerApi.Tests
• UserExtensions

App Web API

OpenApi

• IBM DB2 UDB 11.x
• Informix 12.x or 14.x
• MySQL 5.6, 5.7, or 8.0
• Oracle 12c, 18c, 19c, 21c, or 23c
• PostgreSQL 12, 13, 14, or 15
• MSSQL 16, 17, 19, 22, or Azure SQL
• ASE (ODBC) 16.0
• SQL Anywhere (ODBC) 16, or 17

Database Support

Transaction–to-Cache Mapping

• Debug a PS project directly in PB IDE
• PS Debugger has same toolset as PB Debugger
• PS project is debugged against PS runtime
• See return values from PS Web API

Debugging

PBAutoBuild
{

"BuildPlan": {
"SourceControl": {

"Git": [
{"SrcPath": https://my.azure.com/pbdemo/_git/pbdemo,"User": user@gmail.com,}}

],
"Merging": [

{"Target": "..\\PowerBuilder 22.0\\pbdemo\\pbdemo.pbt",...}
],
"PostCommand": ""

},
...

},
"Projects": {

"pbdemo": {
"ProjectType": 3,
"Application": {

...
},
"Deploy": {

"External": {
"IIS": {

"ServerProfileName": "DEV",
"Name": "myserver",
"SiteName": "PS2022",
"Username": "workgroup\\marmeo",
"Password": "MV58IjE7KXk9c3doMnU+XTohIVg=",
"FrameworkMode": 0,
"AppURL": https://myserver.cloud.com,
"WebAPISiteURL": https://myserver.cloud.com:8080
}
...

Advanced Topics

• Ultra-fast build option
• Database Handling

• Connection types
• Long Running Connection

• Call Merging
• Web API URL

Topics List

Ultra-Fast Build

• Connection Types
• Transaction-to-Cache (static)
• Cache-names (dynamic)

• Long-Running Connection

DataBase Handling

Dynamic Cache

ServerAPI > AppConfig > Applications.json

sqlca.dbparm="cachegroup='prod', cachename='pbdemo2022'"

• Client/Server app (PB)
• Long-running DB connection
• Always the same one for a given client

• Cloud App (PS)
• Short-lived DB connection
• Made from PS ServerAPI
• Cached in a pool when idle and used by any client when needed
• Can change during client session
• Can be shared across multiple client sessions

Long-Running vs Short-Lived

• Client/Server app
• Temp tables are destroyed when DISCONNECT is executed
• Context variables are removed when DISCONNECT is

executed
• Cloud app

• Results of DB operations are confined to current connection,
which is short-lived

• Temp tables or context variables are lost when connection is
returned to the pool

Pitfalls

• LongConnection=1 in DBparm enables long-lived connection
• Recommended increase the transaction timeout value
• Keep in mind server overhead
• Use two transaction objects: one for long-running and one for

short-lived connections

LongConnection
Option

• Tuning excessive server calls
• Why?

• Network-intensive scripts highlight poor network connection
• How?

• Remove recursive eSQL
• Remove DW computed fields calling user functions w/ eSQL
• Move non-visual logic to REST APIs
• Group multiple server calls with PowerServerLabel

Performance Tuning

PowerServerLabel lnv_queue

lnv_queue.StartMerge()

lds.Retrieve(ll_id)

dw_1.Retrieve(ll_id)

SELECT id INTO :ll_id FROM TableA;

Execute Immediate :ls_sql;

lnv_queue.EndMerge()

COMMIT;

Call Merging

PowerServerLabel lnv_queue

lnv_queue.StartMerge(1)

dw_1.Update()

dw_2.Update()

lnv_queue.EndMerge()

If lnv_queue.Results[1].SQLCode = 0 And
lnv_queue.Results[2].SQLCode = 0 Then

COMMIT;

Else

ROLLBACK;

End If

• apprun.json (static URL change)
{ "deployment_urls": {

"launcher": "CloudAppPublisher/CloudAppInstall 22.0",
"runtime": "CloudAppPublisher/runtime/22.2.0.3356",
"web_api": "http://myserver.cloud.com:5099" }

}

Web API URL

• SetPowerServerURL / BeginSession (dynamic API URL change)
GetApplication().SetPowerServerURL(ls_new_url)
GetApplication().BeginSession()

Web API URL (cont)

page
29https://elevate.appeon.com

• PS 2022 solution can target .NET 8.0 framework
• HTTP/2 & TLS 1.3 support
• Multiple authentication templates and services

Integration & Security

PowerServer 2025
New Features

• Configure the application shortcut name

Apprun.json

{
"deployment_urls": {

"launcher": "CloudAppPublisher/CloudAppInstall 25.0",
"runtime": "CloudAppPublisher/runtime/25.0.0.3018",
"web_api": "http://localhost:5099"

},
"deployment_settings": {

"shortcut_name": "testshortcutname"
}

}

• CloudAppSet ("picturecachepath", "/picturecache");
• CloudAppSet ("clearpicturecacheonclose", "true");
• CloudAppSet ("checkpictureforupdate", "true");

Loading images via URL

dw_1.Object.pb_1.filename = http://172.16.5.175/button2.jpg
dw_1.Object.compute_1.Expression = "bitmap('http://172.16.5.175/computed2.jpg')"

DataWindow SQLPreview
• CloudAppSet ("enablesqlpreview", "true")

Request Header for large data
• CloudAppSet ("multipartformdataminsize", "128");

Misc

Demo

• PowerServer
• Seamlessly enables PB apps to the Cloud
• Support of PB features is ~100%
• Few days conversion effort
• Open REST/JSON design
• DB-centric framework

Conclusions

AQ

Q&A Time

&

Thank You

