
How to allow customers to send 
mass emails effectively

Gian Luca De Bonis, Enable Development, CEO/CTO
December 2-3, 2024
PBUGG 2025, April 28-29, 2025



Session Agenda

 Email messaging: the use case

 The “simple” way

 Problems with the “simple” way

 Implementation approaches

 The Fidelius ISV approach

 Implementation steps with Fidelius ISV – for email

 Implementation steps for other channels



Recent Projects

Key Skills

Presenter Profile
 From 2021 – CTS Eventim: Scrum consulting and coaching, 

Agile Project Management, Symphony Product Owner

 From 2021 – Fidelius: cloud solution for messaging 
(WhatsApp, SMS, emails, …) from PB applications and REST 
Client

 From 2018 – tens of PowerBuilder consulting missions for 
PB version upgrade, architecture and UI modernization, 
Scrum

 From 2018 – PB Open

 From 2004 – Enable Multilingual

 PowerBuilder

 C#

 DBMS

 API

Gian Luca De Bonis

linkedin.com/in/gldb

 Scrum, Agility, SDLC

 Project Management

 PB Modernization

Recent Projects

Key Skills



Company Profile

 Enable Development, Appeon Consulting Partner, helps 
companies to enhance the productivity and the quality 
of their development, by providing consulting, training, 
mentoring and software development services – 
including managed out-staffing.

 With more than one hundred and fifty customers all over 
the world, Enable Development organizes a network of 
consultants (freelancers and employees) and provides 
development services on projects it manages directly, 
backed by a team of about 500 developers with all 
technologies, including PB.

 The company specializes in: PowerBuilder, C#, DBMS, 
API, PB Modernization, Scrum and Agility, development 
tools, localization, Agile project management, strategic 
IT consulting, PowerBuilder-centered migration to C# 
(PB Open).

Enable Development



Email messaging: the use case

 Sending emails is one of the most common use cases for data-centric 
applications, where PowerBuilder is undiscussed king

 Our applications usually send:
 Transactional emails – linked to a specific event or process

 Mass emails – linked to a marketing campaign

 Emails are in different languages (for different customers), most of the 
times in HTML format, sometimes with attachments (in different 
languages)

 Emails often contain links to resources (images), and action 
links/buttons for specific actions



The “simple” way

 Sending emails? It’s so simple!

 We just need an SMTP server and an SMTP client object!

 Every customer has an email address, so we could use their SMTP 
server, and configure the details in the application



Problems with the “simple” way

 Well, the world changed since a while ago…

 SMTP Server Management

 Sender with certification, DKIM, SPF, DMARC

 Spam, reputation, IP management

 Server availability

 Hard to get a feedback (delivered, read, bounced), and un-subscription

 Action links require specific solutions

 and… it’s slow!!!



Implementation approaches

1. Historical approach: Customers manage their own servers

2. Historical approach with service: we manage the customers’ SMTP 

servers

3. Centralized solution

4. Use a cloud provider



Implementation approaches

Historical approach: Customer manages their own server

 do they have advanced technical knowledge?

 where do the action links point?

 how to get the feedback and manage un-subscription?

 it is slow



Implementation approaches

Historical approach with service: we manage the customer’s SMTP server

 can we get the security clearance?

 where do the action links point?

 how to get the feedback and manage un-subscription?

 it is slow



Implementation approaches

Centralized solution

 We have one or more SMTP servers

 This includes spam management and reputation, IP management

 A big problem is also the sender certification, and allowing customers to 
use their own address

 the action links could point to a high-available service, in the 
infrastructure

 the service also needs to be ready for the webhooks to manage 
feedback and un-subscription

 and … it’s slow!!!



Implementation approaches

Use a cloud provider

 Several cloud providers allow ISVs to send emails, in a modern and efficient way

 All we need is an integration, API Keys management, sender certification, account 
billing and so on

 A highly-available service needs to be setup in our infrastructure for processing the 
action links

 the service also needs to be ready for the webhooks to manage feedback and un-
subscription

 So, we can have one provider for emails, several for SMS (geographically organized), 
one for WhatsApp and so on

 Basically, dedicating development and operations resources to a non-core business



The Fidelius ISV approach

 Fidelius ISV is a fully managed, multi-modal, unified REST API for messaging 
(SMS, WhatsApp, Email)

 It features a simplified and easy to use API (plus a PowerBuilder class) to 
send SMS, WhatsApp, transactional emails, mass emails

 It’s independent from the implementation of the providers it uses, and isolates 
developers from providers’ breaking API changes

 Totally white-labeled, allows flexible management of commercial policies (i.e.: 
reselling to customers)

 No infrastructure needed for our applications – it’s either pooled or private 
infrastructure – and it is fully managed

 Gives the feedback for delivered, read, bounced messages
 Allows action links that can be used easily by the application
 Fast! 10,000 emails can be sent in less than a minute



Implementation steps with Fidelius ISV – for email

 get an account as a partner and load it with credits

 onboard each sender, and freely allocate credits

 a few lines of code in the application:
 service initialization

 sending a message

 sending mass messages

 getting message statuses and link actions



Implementation steps for other channels

 Sending a message via Email, SMS, WhatsApp is very similar – just 
specify the channel and the needed parameters

 Getting the status is exactly the same as for emails (it’s based on the 
message ID, regardless of the channel used)

 WhatsApp also supports chatting, that can be implemented in the 
application or in a Web Page / Mobile application

 Messages can include a link that points to InfoPages: powerful HTML 
pages that allow the recipients to interact with the message



Code 
snippets

Service initialization

n_fidelius = CREATE n_fidelius

.SetServer(“https://api.fidelius.online/api/v1”)

.SetAPIKeys(<partnerAPIKey>,<customerAPIKey>)

Sending a message

.PostMessage(<channel>,<text>,<recipient>,…)

.GetMessage(…)

.GetModifiedMessages(…)

Sending transactional or mass emails

.PostEmailMessage(…,<subject>,<content>,…,<ds>…)

.GetEmailMessageStatus(…)

.GetEmailRecipients(…)



Code 
snippets

Sending a message (SMS/WhatsApp)

.PostMessage(ls_channel, ls_text, ls_recipient, 

lb_includelink, ls_infopagetext, ldt_programmed, ref 

lll_msgid, ref ls_error)

.GetMessage(lll_msgid, ref ls_json)

.GetModifiedMessages(ldt_last, ref ls_json)

WhatsApp Chat

.GetChatMessages(ls_channel, lll_lastid, ls_recipient, 

ls_json, ref lds_chat)

.GetChatRecipients(lds_chat, ref lds_recipients)

.PostChatMessage(ls_channel, as_text, as_recipient, ref 

lll_msgid, ref ls_error)



Code 
snippets

Sending a message with InfoPages

.PostMessage(ls_channel, ls_text, ls_recipient, 

lb_includelink, ls_infopagetext, ldt_programmed, ref 

lll_msgid, ref ls_error)

.GetMessage(lll_msgid, ref ls_json)

InfoPages endpoints

GET /InfoPage/MessageDetails/{messagecode}

GET /InfoPage/Customer/{messagecode}

POST /InfoPage/Confirm?

 messagecode=<msgcode>&

 confirmationstatus=<action>



Fidelius 
Control 
Panel



Thank you



Q&A Time

AQ &


	Folie 1: How to allow customers to send mass emails effectively
	Folie 3: Session Agenda
	Folie 4: Presenter Profile
	Folie 5: Company Profile
	Folie 6: Email messaging: the use case
	Folie 7: The “simple” way
	Folie 8: Problems with the “simple” way
	Folie 9: Implementation approaches
	Folie 10: Implementation approaches
	Folie 11: Implementation approaches
	Folie 12: Implementation approaches
	Folie 13: Implementation approaches
	Folie 14: The Fidelius ISV approach
	Folie 15: Implementation steps with Fidelius ISV – for email
	Folie 16: Implementation steps for other channels 
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 22: Thank you
	Folie 23: Q&A Time

